博客
关于我
利用pandas做数据分析统计应用---统计二胎年龄差距
阅读量:376 次
发布时间:2019-03-05

本文共 918 字,大约阅读时间需要 3 分钟。

源码和数据文件见上述链接。

本文数据提取自深圳市2019年某次公租房申请公示名单,移除了非身份证的数据。

import pandas as pdimport matplotlib.pyplot as plt '''粗略统计二胎年龄差距se 为1 主申请人,多数为爸爸se为2共同申请人,多为妈妈和孩子se为0,others'''#difage = []class family:	def __init__(self):		self.mainpyear= None		self.comPyear=[]		self.diff = []	def diff_age(self):		if len(self.comPyear)>2:			self.comPyear = sorted(self.comPyear, reverse = True)			#print(self.comPyear)			if( self.comPyear[0]-self.comPyear[1]<18):				self.diff.append( self.comPyear[0]-self.comPyear[1])		self.comPyear=[]if __name__ == '__main__':				b= pd.read_csv('a.csv', sep=',', dtype = {'id':str})	b['year']=pd.to_numeric(b['id'].str[6:10])	myf = family()	for key,row in b.iterrows():		if( row['se']==1):			myf.mainpyear = row['year']			myf.diff_age()		elif( row['se']==2):			myf.comPyear.append(row['year'])			#myf.diff_age()		#print(myf.diff)	a = pd.Series(myf.diff)	a.plot.hist(bins =19 )	plt.show()

 

结论:二胎年龄差距,2,3岁的家庭最多。

转载地址:http://tfpg.baihongyu.com/

你可能感兴趣的文章
Netty工作笔记0065---WebSocket长连接开发4
查看>>
Netty工作笔记0066---Netty核心模块内容梳理
查看>>
Vue基本使用---vue工作笔记0002
查看>>
Netty工作笔记0068---Protobuf机制简述
查看>>
Netty工作笔记0069---Protobuf使用案例
查看>>
Netty工作笔记0070---Protobuf使用案例Codec使用
查看>>
Netty工作笔记0071---Protobuf传输多种类型
查看>>
Netty工作笔记0072---Protobuf内容小结
查看>>
Netty工作笔记0073---Neety的出站和入站机制
查看>>
Netty工作笔记0074---handler链调用机制实例1
查看>>
Netty工作笔记0075---handler链调用机制实例1
查看>>
Netty工作笔记0076---handler链调用机制实例3
查看>>
Netty工作笔记0077---handler链调用机制实例4
查看>>
Netty工作笔记0078---Netty其他常用编解码器
查看>>
Netty工作笔记0079---Log4j整合到Netty
查看>>
Netty工作笔记0080---编解码器和处理器链梳理
查看>>
Netty工作笔记0081---编解码器和处理器链梳理
查看>>
Netty工作笔记0082---TCP粘包拆包实例演示
查看>>
Netty工作笔记0083---通过自定义协议解决粘包拆包问题1
查看>>
Netty工作笔记0084---通过自定义协议解决粘包拆包问题2
查看>>